The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32.
نویسندگان
چکیده
Caspase-3 knockout mice exhibit thickening of the internal granule cell layer of the cerebellum. Concurrently, it has been shown that intracerebral injection of pituitary adenylate cyclase-activating polypeptide (PACAP) induces a transient increase of the thickness of the cerebellar cortex. In the present study, we have investigated the possible effect of PACAP on caspase activity in cultured cerebellar granule cells from 8-day-old rat. Incubation of granule neurons with PACAP for 24 h promoted cell survival and prevented DNA fragmentation. Exposure of cerebellar granule cells to the specific caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethylketone (Z-DEVD-FMK) for 24 h markedly enhanced cell survival and inhibited apoptotic cell death. Time-course studies revealed that PACAP causes a prolonged inhibition of caspase-3 activity without affecting caspase-1. Administration of graded concentrations of PACAP for 3 h induced a dose-dependent inhibition of caspase-3 activity. Incubation of granule cells with both dibutyryl-cAMP (dbcAMP) and phorbol 12-myristate 13-acetate (PMA) mimicked the inhibitory effect of PACAP on caspase-3. Cotreatment of cultured neurons with the protein kinase A inhibitor H89 and the protein kinase C inhibitor chelerythrine abrogated the effect of PACAP on caspase-3 activity. In contrast, the ERK kinase inhibitor U0126 did not affect the action of PACAP on caspase-3 activity. These data demonstrate that PACAP prevents cerebellar granule neurons from apoptotic cell death through a protein kinase A- and protein kinase C-dependent inhibition of caspase-3 activity.
منابع مشابه
Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis.
Neuronal apoptosis occurs during nervous system development and after pathological insults to the adult nervous system. Inhibition of CED3/ICE-related proteases has been shown to inhibit neuronal apoptosis in vitro and in vivo, indicating a role for these cysteine proteases in neuronal apoptosis. We have studied the activation of the CED3/ICE-related protease CPP32 in two in vitro models of mou...
متن کاملPACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis.
Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in neuronal cell death associated with neurodegenerative diseases and stroke. In the present study, we have investigated the potential neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on oxidative stress-induced apoptosis. Incubation of cerebellar granule cells wit...
متن کاملPituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death.
Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precurso...
متن کاملPituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells.
The sphingolipid metabolites, ceramides, are critical mediators of the cellular stress response and play an important role in the control of programmed cell death. In particular, ceramides have been shown to induce apoptosis of cerebellar granule cells. We show that pituitary adenylate cyclase-activating polypeptide (PACAP) prevents C2-ceramide-induced apoptosis. The neuroprotective effect of P...
متن کاملActivation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels
High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) and a high density of PACAP binding sites have been detected in the developing rat cerebellum. In particular, PACAP receptors are actively expressed in immature granule cells, where they activate both adenylyl cyclase and phospholipase C. The aim of the present study was to investigate the ability of PACAP to indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 24 شماره
صفحات -
تاریخ انتشار 2000